Why EB Welding Is Still Cutting Edge Technology

See All Articles

EB Welding technology has been around since the 1950’s. And despite all the scientific and technological advances across six decades, it is still the best process to join metals, especially difficult to weld alloys and dissimilar materials. Here’s why it is still top dog after all these years.

The Top 5 Reasons for EB Welding

The first practical electron beam welding machine was put into use in 1958. Since that time many other welding methods, such as TIG, MIG, and Laser Welding have evolved technically. However, electron beam (EB) welding is still the absolute best welding method for many critical, high-tech applications. Whether it’s creating high temperature exhaust nozzles for rockets or jet aircraft, or joining cutting edge 3D printed parts, EB welding has advantages that other welding processes simply don’t.

This article presents the top 5 reasons why electron beam welding is still as cutting edge as it was 60 years ago.

EB Welding has the Deepest Penetration with the Smallest Heat Effected Zone

At the top of the list of EB welding’s admirable qualities is unsurpassable weld penetration. A typical 150 KV electron beam welding machine can create a weld spike in steel over 2” deep with a heat affected zone less than 0.2” wide. Simply put, there is no other welding process that can penetrate that deeply and precisely.

That EB welding can accomplish such a feat is due to the physics of the electron beam welding process.  Basically, EB welding works by shooting a high velocity beam of electrons into a part being welded. The electrons penetrate the material at the atomic level, imparting their kinetic energy as they strike molecules. The excited molecules heat up, resulting in a significant amount of energy in a very small area. The part is heated very quickly and very locally to the beam. Other welding processes rely mainly on heat conduction to transfer energy from the welding device into the part at the point where the welding device touches the surface of the material. Conduction, however, leads to the energy spreading out across the part as it heats, which limits penetration and increases the chances of melting or deforming the workpiece. Recently, there has been some work done to develop lasers that can approach the penetration of an electron beam. However, these lasers require exceptionally high power (close to 100 KW), which makes them both exceptionally expensive and exceptionally dangerous to work with. Electron Beam welding technology is proven safe and incredibly effective.

Welding in Vacuum is Ideal for Eliminating Weld Impurities

A beam of accelerated electrons cannot be created or maintained in air because the electrons strike gas molecules and are deflected and scattered. Hence, electron beam welding must occur in a vacuum, and often this is viewed as a criticism: the welding chamber has to be pumped down and this takes time, etc. While this requirement is a complication, it is outweighed by the benefits that welding in a vacuum creates.

One of the biggest challenges in welding involves minimizing the impact of the molten metal interacting with ambient gases. These gases can react with the metal, creating oxides and other compounds that change the metallurgy of the weld pool and lead to impure welds. Often a cover gas is used to minimize these effects. However, nothing can compare to the cleanliness of welding in a vacuum. In addition to being void of atmospheric gases, some impurities actually burn away during welding, and the result is the purest, cleanest weld there is.

Consider welding titanium: when heated, titanium becomes extremely reactive to the gases in air, resulting in carbides, nitrides, and oxides, which cause brittleness and can reduce fatigue resistance and notch toughness in the heat affected zone of the weld. The backside of the weld is also a problem as it is as prone to these problems as the front. But in the vacuum chamber of an EB Welder, pumped down to 10-4 Torr, these problems simply disappear. The elimination of ambient gases combined with the energy density of the electron beam, easily creates very strong and aesthetically pleasing welds. As one of our welders once put it, “Titanium welds like butter in an EB machine.”

Aerospace Control and Quality Standards

The EB welding process has, since its inception, been closely tied to the high tech military and civilian aviation industry as well as the manned space programs of the 1960’s — all of these technologies grew up together. Electron beam welding was particularly applicable to aerospace applications not only because of the strength of the welds, but because the EB process lends itself to high quality machine controlled welds.

Because of the required vacuum, EB welding cannot be performed by hand. This means controlling the power of the beam and the motion of the part beneath that beam has to occur with some form of automation. In the early days, this was accomplished by electro-mechanical fixtures and manipulators. However, with the advent of computers, EB machines quickly evolved into full CNC control. For a design engineer, this meant that a very precise weld could be applied in a highly repeatable way.

Because of EB welding’s precision and automated repeatability, the aerospace industry developed quality standards to make sure the human elements of the welding process were tightly controlled. At first, these specifications were created by NASA, Grumman, Lockheed Martin, and other leading aerospace companies. Eventually, industry wide standards were developed, such as Aerospace Material Specification AMS 2680 and AMS2681. These specifications govern all aspects of the welding process, including joint design, material preparation, cleaning, testing, operator training, and process certification. EB welding has a precision, repeatability, and a “built in” culture of mil-spec high quality.

Superior Welding of Materials with High Thermal Conductivity or Unique Properties

The energy and thermodynamic characteristics of an electron beam are very unique. This ability to apply exceptionally high levels of heat energy to a very small area makes it the preferred welding method for many hard to weld materials.

Copper is one such material. Copper has superior thermal conductivity, which for some applications is a great attribute. But that high thermal conductivity also makes copper notoriously difficult to weld. High thermal conductivity creates challenges for heat conduction based welding methods such as MIG and TIG. These methods tend to melt the material on the surface of the weld area while not achieving significant weld penetration. Basically, the heat disperses quickly, either not heating the weld area enough, or overheating the entire part and causing it to melt and warp.

Laser welding is perhaps an option, but weld penetration is limited by not only thermal conductivity but also reflectivity. The amount of power a laser can apply to a work piece is limited by the reflectivity of molten metal. Essentially, the weld pool becomes a mirror reflecting energy away, again resulting in poor penetration or the over application of power, which can result in melting and distortion of the part. For copper, EB welding is often the most feasible option.

As mentioned earlier, a typical high voltage EB machine can obtain a weld penetration of about 2” in steel. This same machine can weld about 0.75” deep in aluminum and 0.5” in copper. As in steel, the welds will again be very narrow with a small heat affected zone.

EB welding’s unique ability to throw a lot of energy into a very small area also means that it is a great option for welding dissimilar material combinations where different melting points or conductivity might be a problem, or welding alloys that are crack sensitive or prone to porosity. 3D printed materials are particularly well suited to EB welding. Typically, metal additive manufacturing relies on melting a powered material into a solid. This method tends to create voids within the material lattice of the part. When welded, these voids combine causing significant porosity in the weld. With careful control, an electron beam welder can join parts with minimal porosity issues.

EB Welding is Affordable

EB welding can also be a very cost effective joining technology. It is true that for very large parts or complicated weld paths EB may not be the best option. Parts have to fit in a vacuum chamber and the welding beam has to be able to follow the path of joint. A trained and certified stick welder is very hard to beat from a versatility perspective. However, for smaller parts and high volume repeatable welds, EB can be amazingly efficient.

As an example, the welding of precision gears for the commercial aviation or medical device industries is a great application for EB welding. Gears for these industries require exceptional quality in high volume and at a low cost. In a typical gear assembly, the gear itself is made from a hardened alloy while the shaft or base is made from a less expensive and lighter alloy. EB welding’s excellence at joining dissimilar materials comes into play at this point. Making the weld strong and pure isn’t an issue, and fortunately, with a bit of well-engineered tooling and a degree of automation, these high quality welds can be achieved with very short cycle times and low cost.

For certain applications, the quality to cost provided by automated electron beam welding is impossible to beat.

60 Years Old and Still Going Strong

Electron beam welding was developed in the late 1950’s, came of age during the 1960’s, and today is a tried and true technology that remains unsurpassed for weld penetration, weld purity, and precision repeatability. The process is highly standardized, with a tradition of high quality baked in. However, the EB welding process also has proven flexibility, adapting with the times such that it is an important part of even the most modern of manufacturing technologies.

Electron beam welding: cutting edge since 1958.